2(x^2)+8(x^2-972)=121.5

Simple and best practice solution for 2(x^2)+8(x^2-972)=121.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x^2)+8(x^2-972)=121.5 equation:



2(x^2)+8(x^2-972)=121.5
We move all terms to the left:
2(x^2)+8(x^2-972)-(121.5)=0
We add all the numbers together, and all the variables
2x^2+8(x^2-972)-121.5=0
We multiply parentheses
2x^2+8x^2-7776-121.5=0
We add all the numbers together, and all the variables
10x^2-7897.5=0
a = 10; b = 0; c = -7897.5;
Δ = b2-4ac
Δ = 02-4·10·(-7897.5)
Δ = 315900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{315900}=\sqrt{8100*39}=\sqrt{8100}*\sqrt{39}=90\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{39}}{2*10}=\frac{0-90\sqrt{39}}{20} =-\frac{90\sqrt{39}}{20} =-\frac{9\sqrt{39}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{39}}{2*10}=\frac{0+90\sqrt{39}}{20} =\frac{90\sqrt{39}}{20} =\frac{9\sqrt{39}}{2} $

See similar equations:

| --7=18-5f | | 9(x+5)=5x-(3-x) | | 6h-(8-3h)=6-3(h+2) | | 3x+40+7x+1=180 | | 3x+40=7x-1 | | 4x+38=6x-8 | | 2x+4+10x-4+3x=180 | | 9(x+5)=5(x-)(3-x) | | 13x-4x+32=25 | | 13=2-4d | | 7x-3+39=180 | | 7x-3=39=180 | | −6x=30 | | -5+3x=16-4x | | v/2=-17 | | F(5)=3x-4 | | 25.5=2(3.14)r | | x^2=6x=0 | | 1.2x+4.3=2.1-2 | | 2x-0.005=x | | 25.75=2(3.14)r | | 3x+0.6=6 | | 5-(3x+2)=13-x | | 6^x+2=72 | | 3x+1-5x=-15 | | 54+x+89=76 | | -2a+6a=0 | | 4/7*(x-4)=4 | | 9m=06 | | 5x-3x=-12 | | 5=-3x+32x= | | 6x^2+32x+11=0 |

Equations solver categories